

ORIGINAL ARTICLE

PREVALENCE OF IRON DEFICIENCY ANEMIA AND ASSOCIATED FACTORS AMONG URBAN SCHOOL CHILDREN IN KENITRA, NORTH WEST OF MOROCCO

| Imane Achouri¹ | Youssef Aboussaleh¹ | Rachid Sbaibi¹ | Ahmed Ahami¹ | Mohamed El Hioui¹ |

¹Behavioral Neurosciences and Nutritional Health Unit| Nutrition & Health Laboratory | Department of Biology | Faculty of Sciences | University Ibn Tofail | BP 133 14000 Kénitra | Morocco |

Manuscript	Ref.1-ajiras300915	ISSN 2429-5396
Received	30 September 2015	
Accepted	20 September 2015	
Published	04 November 2015	

ABSTRACT

Background: Iron deficiency anemia is the most common type of nutritional anemia; it has been recognized as an important health problem in Morocco. **Objective:** This study aimed to estimate the prevalence of iron deficiency anemia among school children in Kenitra city, North West of Morocco and its association with socioeconomic, educational level, anthropometric and diet factors. **Methods:** The sample represents 271 school children randomly chosen of all educational levels, aged 6 to 15 years (Mean= 10.75 years \pm SD=1.40). The level of haemoglobin, was measured. Anemia was defined when haemoglobin \leq 11.5 g/dl. A questionnaire was developed to obtain information about educational level of the parents, socio-economic and daily food consumption from plant and animal source. Anthropometric measurements were carried out according to the WHO standards. Anthropometric indices were determined by Z scores calculated by the WHO growth references 2007. **Results:** The mean hemoglobin concentration was 12.45 g/dl: 12.52 g/dl for boys and 12.41 g/dl for girls. The prevalence of iron deficiency anemia was 16.2%: There is a significant difference of anemia prevalence between girls (12.3%) and boys (19.5%). It is directly correlated to educational level of mothers, sex, anthropometric and diet factors. **Conclusions:** It is concluded that anemia is less prevalent in this study and it was found to be higher in children who take foods of both plant and animal sources less frequently.

Key words: Prevalence, Iron deficiency, Anemia, School children, Morocco.

1. INTRODUCTION

Iron deficiency anemia (IDA) is considered the major public health problem and the most common nutritional deficiency around the world [1]. It is still important globally, and regionally [2] with higher rates in the developing countries [3,4]. The prevalence of anemia in the world is 24.8 % [5]. Furthermore, it is estimated that iron deficiency contributes towards 50% of the approximated 600 million global anemia cases in preschool and school-aged children [6]. The population groups which are most affected are pregnant women, infants and young children [7,8]. This high prevalence of IDA in developing countries is associated with poor sanitation conditions, low socio-economic conditions, restricted access to food and lack of knowledge for good dietary practices [9]. Anemia has multiple consequences which can be extremely severe [10,11]. It affects the physical and mental development of an individual leading to decreased working capacity , which in turn affects the development of the country [12].

The objectives of the present study were to determine the prevalence of iron deficiency among school children in Kenitra city, North West of Morocco and its association with socioeconomic, educational level, anthropometric and diet factors.

2. MATERIALS AND METHODS

2.1 Place and the sample of study: A cross sectional descriptive survey was conducted among 271 school children aged 6 to 15 years old in Kenitra city, located in the North West of Morocco.

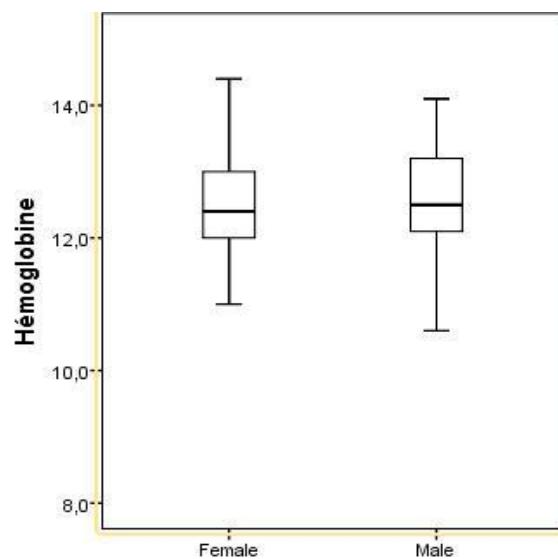
2.1 Questionnaire: This questionnaire was tested and validated locally, covering the following parameters: Demographic and anthropometric indicators including age, sex, weight and height; socioeconomic indicators including the parent educational level, family income and food consumption.

2.3 Anthropometric measurements: The children's height and weight were measured according to the WHO's guideline [13], with minimal clothing and without shoes. Weight was measured to the nearest 0.1 kg with an electronic

scale. Student height was measured to the nearest 0.1 cm with a wooden stadiometer placed on a flat surface. Weight, height, and age data were used to calculate z-scores of the three different nutritional indicators in comparison to the newly published World Health Organization/National Center for Health Statistics (WHO/NCHS) reference population [14] using the WHO AnthroPlus Software (Version 10.4, 2010) [15]. The anthropometric measurement of the study population were determined using z-scores in accordance with the world health organization, 2007 for 5-19 years [17].

Stunting and thinness were defined as Height-for-Age (HAZ) and Body Mass Index-for-Age (BAZ) Z-scores < -2 , respectively, according to the World Health Organization (WHO) [16].

2.4 Blood test: A 5-ml blood sample was collected by antecubital venipuncture and drawn into a container with EDTA for red blood cell (RBC), haemoglobin (Hb), haematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), and mean corpuscular haemoglobin concentration (MCHC) analyses. These blood analysis were measured using an automated cell counter (MS9-5S, Osny, France) by trained and experienced laboratory technicians in private laboratory of medical analysis under suitable conditions.


The Hemoglobin level was determined by cyanmethemoglobin method using a Drabkin reagent (D5941) containing potassium ferricyanide $K_3Fe(CN)_6$ and potassium cyanide (KCN). the potassium ferricyanide oxidizes iron to form methemoglobin. The potassium cyanide then combines with methemoglobin to form cyanmethemoglobin; a stable compound which was measured by spectrophotometrically at 540 nm.

Children included into the study were divided into 2 groups according to age: Group 1: 6-11 years, and Group 2: 12-14 years. Anemia was defined as: (Hb<12 g/dl for children 12-14 years old, Hb<11.5 g/dl for children 6-11 years old). The severity of anemia was classified as mild ($12 > Hb > 10.5$ g/dl), moderate ($7.5 < Hb \leq 10.5$ g/dl), and severe ($Hb < 7.5$ g/dl) [12].

2.5 Statistical analysis: The statistical analysis were performed using the software IBM SPSS Statistics version 21 (Statistical Package for the Social Sciences). The results are given as figures and tables. Anthropometric measurements were analyzed by AnthroPlus (WHO standards) [15]. The association between nutritional status, socioeconomic, educational level, anthropometric and diet factors were analyzed by the Pearson chi-square test. The student t test was used to compare hemoglobin with males and females and a p value < 0.05 was considered statistically significant.

3. RESULTS

3.1 Haemoglobin by sex: The mean hemoglobin concentration shown in figure 1 was 12.45 g/dl: 12.52 g/dl for boys and 12.41 g/dl for girls.

Figure 1: The figure shows the distribution of haemoglobin concentration between male and female children.

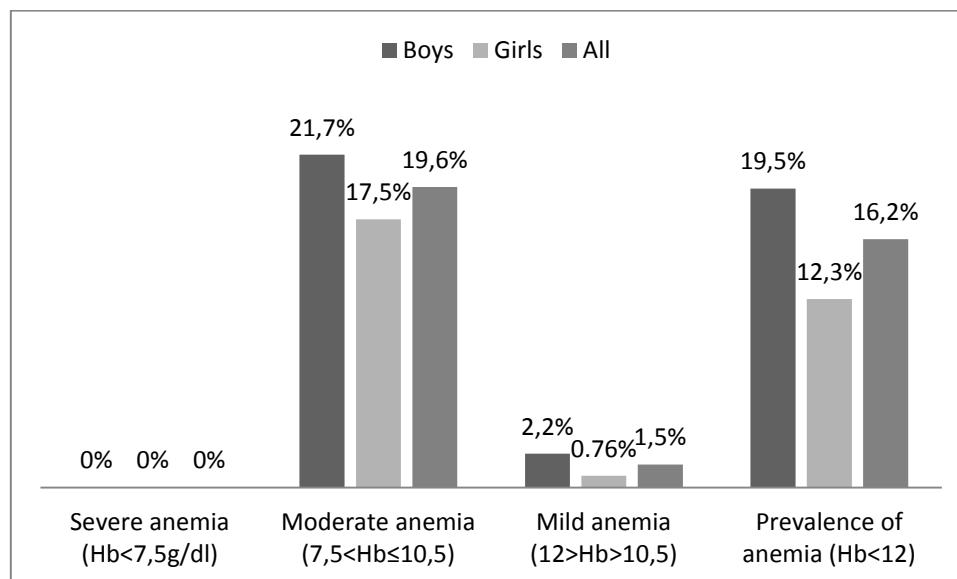

The comparison of the haemoglobin concentration between boys and girls by test of student is shown in table 1. There is no significant difference between male and female children according to the results of blood test ($p > 0.05$).

Table 1: The table shows the comparison of the Haemoglobin concentration between boys and girls.

Blood test	Mean \pm SD			Test of student	
	All(271)	Boys(n=142)	Girls(n=127)	P	
Haemoglobin (Hb) g/dl	12.45 \pm 0.81	12.52 \pm 0.78	12.41 \pm 1.00	T=-0.36 ;p> 0.05	

3.2 Prevalence of iron deficiency anemia by sex: The figure 1 show the distribution of anemic children (HB \leq 11.5), and non-anemic (HB > 11.5) according to the sex. The prevalence of anemia was 16.2%: boys (19.5%); girls (12.3%). There was a significant difference of anemia prevalence between girls and boys (t= -2.06 ;p< 0.05).

3.3 Prevalence of iron deficiency anemia by sex and class: The figure 2 shows the severity of anemia class between boys and girls. No single case of severe anemia (Hb < 7.5%) was detected in this study (figure 2).

Figure 2: The figure shows the percentage of severe, moderate and mild anemia by sex.**Table 2:** The table shows the distribution prevalence of anemia class between boys and girls.

	severe Anemia (Hb < 7.5 g/dl)	moderate Anemia (7.5 < Hb < 10.5)	mild Anemia (12 > Hb > 10.5)	Prevalence of anemia (Hb < 12)
Boys(n=142)	0%	21.7%	2.2%	19.5%
Girls(n=129)	0%	17.5%	0.76%	12.3%
All	0%	19.6%	1.5%	16.2%

3.4 Prevalence of iron deficiency anemia and associated factors

The age of 271 respondents is ranged between 6 to 15 years (Mean= 10.75 years \pm SD=1.40). 52.4% of boys and 47.6% of girls. 83.4% were under the age of 12. As to the income, anemia was found in 16.5% of children whose parents had a temporary income. 19.8% fathers and 16.2% mothers of anemic children were illiterate. The percentage of thinness and stunting among children were 4.1% and 6.3% respectively. 64.9% of children ate plant food at least once a day. The occurrence rate of anemia was higher in children who consumed vegetables and animal source foods less frequently. The results of Chi-squared test of independence at 5% error show a dependence between nutritional status and educational level of mothers, sex, anthropometric and diet factors (P <0.05) (table 3).

Table 3: The table shows the socio-economic and anthropometric characteristics of anemic and non-anemic children.

	All Children	Nutritional status		Chi-squared test	P
		Children without anemia	Children with anemia		
Sex					
Male	142(52.4%)	114(62.7%)	28(19.5%)	4.92	0.027*
Female	129(47.6%)	113(76.2%)	16(12.3%)		
Age					
\leq 12	226(83.4%)	158(69.9%)	68(30.1%)	1.03	0.31

> 12	045(16.6%)	28(62.2%)	17(37.8%)		
Educational level(Fathers)					
Illiterate	81(36.8%)	65(80.2%)	16(19.8%)	3.46	3.455
Primary level	83(37.7%)	69(83.1%)	14(16.9%)		
Secondary level	42(19.1%)	36(85.7%)	06(14.3%)		
Tertiary level	14(06.4%)	9(64.3%)	05(35.7%)		
Educational level (Mothers)					
Illiterate	143(65.0%)	119(83.8%)	23(16.2%)	3.31	0.004*
Primary level	046(20.9%)	36(76.6%)	11(23.4%)		
Secondary level	020(09.1%)	18(85.7%)	3(14.3%)		
Tertiary level	011(05.0%)	6(60%)	04(40.0%)		
Family income					
Temporary	182(82.7%)	152(83.5%)	30(16.5%)	3.22	0.073
Permanent	038(17.3%)	27(27.1%)	11(28.9%)		
Consumption of food from plant source					
Less than once a day	095(35.1%)	63(68.6%)	32(31.4%)	10.52	0.001*
Once a day or more	176(64.9%)	151(85.2%)	25(14.8%)		
Consumption of food from animal source					
Less than once a week	056(20.7%)	38(67.9%)	18(32.1%)	5.25	0.022*
Once a week or more	215(79.3%)	176(81.3%)	39(18.7%)		
BMI for age < -2 Z score					
Yes	011(04.1%)	4(36.4%)	07(63.6%)	5.54	0.019*
No	260(95.9%)	182(70%)	78(30.0%)		
Height for age < -2 Z score					
Yes	017(06.3%)	6(35.3%)	11(64.7%)	9.36	0.002*
No	254(93.7%)	180(70.9%)	74(29.1%)		

4. DISCUSSION

The school children in the present study were aged 6 to 15 years (Mean= 10.75 years \pm SD=1.4), (52.4% boys; 47.6% girls). 83.4% were younger than 12 years old, the prevalence of anemia was 16.2%. There was a significant difference of anemia between girls and boys according to the result of blood test, This is comparable to the previous studies which revealed that the rates of anemia among boys are higher than among girls [17-19]. These differences can be attributed to genetics factors [20]. The present study also showed that the prevalence rates of mild and moderate anemia were 1.5% and 19.6% respectively. No single case of severe anemia (Hb< 7.5%) was detected.

The prevalence of anemia (16.2%) in the present study is less than numerous similar study. Zimmermann et al. (2003) in Northern Morocco reported that anemia prevalence was 35% [21] and more than 30% of 306 pupils from seven primary schools in province of Kenitra had anemia [22], and it was observed in 23.4% of the pupils in urban area of Kenitra [23]. These rates are consistent with the national prevalence (31.5%) reported by the Ministry of Public Health of Morocco in 2000 [24]. This prevalence of anemia (16.2%) may be due to the iron fortification project of the health ministry started in 2005, to reduce micronutrients malnutrition. In the other place of the world: Hassan and Khalique (2002) found anemia in 24.8% of children [25]. Gomber et al. (2003), reported that the prevalence of anemia in school children, from urban slums, aged 5-10.9 years, was 41.8% [26]. Srivastava et al. (2012) found anemia in 37.5% of children [27]. The results of a study in Southwest of Ethiopia indicated that 39.1% of children aged between 7 and 14 years were anemic

[28], and 36.4% among Vietnamese school age children [29], this difference in the prevalence, may be due to differences in study setting, sample size, the diet consumed and other associated factors.

The results of Chi-squared test of independence at 5% error show a dependence between nutritional status and educational level of mothers, sex, anthropometric and diet factors ($P < 0.05$). In comparison with this finding, El Hioui et al. (2008), Choi et al. (2011), Alemayehu (2005), Kaya et al. (2006), Al-Zain (2009) and Male et al. (2001), reported that mothers' educational level is a determinant factor of anemia [30,31,28,32,33,34].

Consumption of animal source foods was found to be associated with a decreased risk of stunting and improved other anthropometric indices [35]. Reports of Djokic et al. (2010), Kaya et al. (2006), and Tiwari and Seshadri (2000), showed that irregular consumption of meat and vegetables were found to be important correlates of anemia among school-age children [36-32-37]. This fact supports the finding of this study. There was no significant relationship between the prevalence of anemia and family income, age group (≤ 12 ; > 12) and educational level (fathers).

5. CONCLUSION

The present study highlights the prevalence of anemia among school children in Kenitra in Morocco (16.2%), which was significantly more frequent among boys than girls. Our finding showed that mothers' educational level and malnutrition were determinants factors of this health problem.

Even though the rate of anemia in this study is lower than the previous studies in the same region, strategies are needed such as improving the women's education, the nutritional awareness and combining iron fortification and iron supplementation programs to reduce the prevalence of anemia in school children.

7. REFERENCES

1. DeMaeyer EM, Dallman P, Gurney JM, Hallberg L, Sood S, Srikantha S. Preventing and controlling iron deficiency anaemia through primary health care: a guide for health administrators and programme managers; 1989. Available on: http://apps.who.int/iris/bitstream/10665/39849/1/9241542497_eng.pdf.
2. Aboussaleh Y, Sbaibi R, El Hioui M, Ahami A. La carence en fer et le développement cognitif. *Antropo*. 2011;(25):91-6. Available on: <http://www.didac.ehu.es/antropo/25/25-8/Aboussaleh.pdf>.
3. Lerner NB, Sills R. Iron deficiency anemia. *Nelson Textbook of Pediatrics*. 2011;2:1655. . Lerner NB, Sills R. Iron deficiency anemia. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, Behrman RE, editors. *Nelson Textbook of Pediatrics*. 19th ed. Philadelphia: Elsevier;2011:1655-1658. Available on: http://www.eu.elsevierhealth.com/media/us/samplechapters/9781437707557/Nelson_Textbook_of_Pediatrics_SampleChapter.pdf.
4. WHO. Preventing and controlling iron deficiency anaemia through primary health care. Geneva:switzerland: WHO; Available on: http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9241542497.pdf.
5. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. *Public health nutrition*. 2009;12(04):444-54. Available on: http://journals.cambridge.org/abstract_S1368980008002401
6. WHO. Guideline: Intermittent iron supplementation in preschool and school-age childrenthe, Approved by the Guidelines Review Committee. Geneva: suisse: Geneva: World Health Organization(WHO), 2011. Available on: http://apps.who.int/iris/bitstream/10665/44648/1/9789241502009_eng.pdf.
7. Dillon J. [Prevention of iron deficiency and iron deficiency anemia in tropical areas]. *Medecine tropicale: revue du Corps de sante colonial*. 1999;60(1):83-91. Dillon J. [Prevention of iron deficiency and iron deficiency anemia in tropical areas]. *Medecine tropicale: revue du Corps de sante colonial*. 1999;60(1):83-91. Available on: <http://www.ncbi.nlm.nih.gov/pubmed/10989795>.
8. Chhabra S, Kaur P, Tickoo C, Zode P. Study of Fetal Blood With Maternal Vaginal Bleeding. *Asian Journal of Scientific Research*. 2012;5(1):25-30. Available on: <http://scialert.net/qredirect.php?doi=ajsr.2012.25.30&linkid=pdf>
9. Finch CA. Iron nutrition. *Annals of the New York Academy of Sciences*. 1977;300(1):221-7. Available on: <http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1977.tb19320.x/abstract>.
10. Goudarzi A, Mehrabi M, Goudarzi K. The effect of iron deficiency anemia on intelligence quotient (IQ) in under 17 years old students. *Pak J Biol Sci*. 2008;11(10):1398-400. Available on: <http://198.170.104.138/pjbs/0/422-PJBS-DOI.pdf>.
11. Ahmadi A, Enayatizadeh N, Akbarzadeh M, Asadi S, Tabatabaee S. Iron status in female athletes participating in team ball-sports. *Pakistan Journal of Biological Sciences*. 2010;13(2):93. Available on: <http://docsdrive.com/pdfs/ansinet/pjbs/2010/93-96.pdf>.
12. WHO. Iron deficiency anaemia: assessment, prevention and control: a guide for programme managers. World Health Organization(WHO) Dept of Nutrition for Health and Development, 2001. Available on: <http://apps.who.int/iris/handle/10665/66914>.
13. OMS. utilisation et interprétation de l'anthropométrie. serie de rapports techniques N°854. Suisse:Genève: Organisation Mondiale de la Santé(OMS), 1995.Available on: http://apps.who.int/iris/bitstream/10665/37006/1/WHO_TRS_854_fre.pdf
14. WHO, UNICEF. WHO child growth standards and the identification of severe acute malnutrition in infants and children: joint statement by the World Health Organization and the United Nations Children's Fund. 2009. Available on: <http://apps.who.int/iris/handle/10665/44129>.
15. Blössner M, Siyam A, Borghi E, Onyango A, de Onis M. WHO AnthroPlus for personal computers manual: software for assessing growth of the world's children and adolescents. World Health Organization: Geneva, Switzerland. 2009. Available on: http://www.who.int/growthref/tools/who_anthroplus_manual.pdf.
16. WHO Multicentre Growth Reference Study Group, WHO Child Growth Standards: 406 Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body 407 Mass Indexfor-Age: Methods and Development,WHO, Geneva, Switzerland, 2006, Available on: <http://www.who.int/growthref/en/>.

17. WHO. Growth reference data for 5-19 years. Geneva:switzerland: World Health Organization(WHO), 2007. Available on: Available on: http://www.who.int/growthref/who2007_bmi_for_age/en/.
18. Nicklas TA, Kuvibidila S, Gatewood LC, Metzinger AB, Frempong KO. Prevalence of anaemia and iron deficiency in urban Haitian children two to five years of age. *Journal of tropical pediatrics*. 1998;44(3):133-8. Available on: <http://tropej.oxfordjournals.org/content/44/3/133.short>.
19. Bernard S. Prevalence and risk factors of anemia among children 6-59 months old in Haiti. *Anemia*. 2013;2013. Available on: <http://www.hindawi.com/journals/anemia/2013/502968/abs/>.
20. Leite MS, Cardoso AM, Coimbra Jr CE, Welch JR, Gugelmin SA, Lira PCI, et al. Prevalence of anemia and associated factors among indigenous children in Brazil: results from the First National Survey of Indigenous People's Health and Nutrition. *Nutr J*. 2013;12:69. Available on: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681561/pdf/1475-2891-12-69.pdf>.
21. Siegel EH, Stoltzfus RJ, Khatry SK, Leclercq S, Katz J, Tielsch JM. Epidemiology of anemia among 4-to 17-month-old children living in south central Nepal. *European journal of clinical nutrition*. 2006;60(2):228-35. Available on: <http://www.nature.com/ejcn/journal/v60/n2/abs/1602306a.html>.
22. Zimmermann MB, Zeder C, Chaouki N, Saad A, Torresani T, Hurrell RF. Dual fortification of salt with iodine and microencapsulated iron: a randomized, double-blind, controlled trial in Moroccan schoolchildren. *The American journal of clinical nutrition*. 2003;77(2):425-32. Available on: <http://ajcn.nutrition.org/content/77/2/425.short>.
23. Aboussaleh Y, Ahami AOT, Alaoui L, Delisle H. Prévalence de l'anémie chez les préadolescents scolaires dans la province de Kénitra au Maroc. *Cahiers d'études et de recherches francophones/Santé*. 2004;14(1):37-42. Available on: http://www.ile.com/fr/revues/san-e-docs/prevalence_de_lanemie_chez_les_preadolescents_scolaires_dans_la_province_de_kenitra_au_maroc_263013/article.phpml.
24. Aboussaleh Y, Ahami AOT, Bonthoux F, Marendaz C, Valdois S, Rusinek S. Performances cognitives des enfants anémiques âgés de 6 à 11 ans en milieu urbain du nord-ouest Marocain. *Journal de Thérapie Comportementale et Cognitive*. 2006;16(2):49-54. Available on: <http://www.em-consulte.com/article/97126/article/performances-cognitives-des-enfants-anemiques-ages>.
25. MPH. deficiencies in micronutrients:Extent of the problem and strategies of fight programs of fight against the disorders due to deficiencies in micronutrients Morocco. Rabat:Morocco: Ministry for the Public Health of Morocco(MPH), 2001.
26. Hassan M, Khalique N, editors. Health Status and Anthropometric Profile of School Going Children (5-15 years) in Aligarh City. Souvenir. 29th Annual Conference of IAPSM and 9th Annual Conference of Maharashtra Chapter of IAPSM; 2002.
27. Gomber S, Madan N, Lal A, Kela K. Prevalence & etiology of nutritional anaemia among school children of urban slums. *Indian Journal of Medical research*. 2003;118:167-71. <http://icmr.nic.in/ijmr/2003/1004.pdf>.
28. Srivastava A, Mahmood SE, Srivastava PM, Shrotriya VP, Kumar B. Nutritional status of school-age children-A scenario of urban slums in India. *Archives of public health*. 2012;70(1):1-8. Available on: <http://link.springer.com/article/10.1186/0778-7367-70-8>.
29. Alemayehu N. Prevalence of hook worm infection and its association with anemia among students of Asendabo elementary school. Abstract, student research project, CBE program. 2005;2:209.
30. Le HT, Brouwer ID, Burema J, Nguyen KC, Kok FJ. Efficacy of iron fortification compared to iron supplementation among Vietnamese schoolchildren. *Nutrition journal*. 2006;5(1):32. Available on: <http://www.biomedcentral.com/content/pdf/1475-2891-5-32.pdf>.
31. El Hioui M, Ahami A, Aboussaleh Y, Rusinek S, Dik K, Soualem A. Iron deficiency and anaemia in rural school children in a coastal area of Morocco. *Pakistan J Nutr*. 2008;7:400-3. Available on: <http://docsdrive.com/pdfs/ansinet/pjn/2008/400-403.pdf>.
32. Choi H-J, Lee H-J, Jang HB, Park JY, Kang J-H, Park K-H, et al. Effects of maternal education on diet, anemia, and iron deficiency in Korean school-aged children. *BMC public health*. 2011;11(1):870.
33. Kaya M, Pehlivan E, Aydoğdu I, Genç M, Gunes G, Kaya E. Iron deficiency anaemia among students of Two primary schools at different socioeconomic conditions in Malatya, Turkey. *İnönü Üniversitesi Tip Fakültesi Dergisi*. 2006;13(4):237-42.
34. Al-Zain BF. Impact of socioeconomic conditions and parasitic infection on hemoglobin level among children in Um-Unnasser Village, Gaza Strip. *Turkish Journal of Medical Sciences*. 2009;39(1):53-8. Available on: <http://journals.tubitak.gov.tr/medical/issues/sag-09-39-1/sag-39-1-9-0703-11.pdf>.
35. Male C, Persson L, Freeman V, Guerra A, Hof M. Prevalence of iron deficiency in 12-mo-old infants from 11 European areas and influence of dietary factors on iron status (Euro-Growth study). *Acta Paediatrica*. 2001;90(5):492-8. Available on: <http://onlinelibrary.wiley.com/doi/10.1111/j.1651-2227.2001.tb00787.x/abstract>.
36. Dror DK, Allen LH. The importance of milk and other animal-source foods for children in low-income countries. *Food & Nutrition Bulletin*. 2011;32(3):227-43.
37. Djokic D, Drakulovic M, Radojicic Z, Radovic LC, Rakic L, Kocic S, et al. Risk factors associated with anemia among Serbian school-age children 7-14 years old: results of the first national health survey. *Hippokratia*. 2010;14(4):252. Available on: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031319/pdf/hippokratia-14-252.pdf>.
38. Tiwari K, Seshadri S. The prevalence of anaemia and morbidity profile among school going adolescent girls of urban Kathmandu, Nepal. *Journal of Nepal Medical Association*. 2000;39(136):319-25. Available on: <http://jnma.com.np/jnma/index.php/jnma/article/download/767/1521>.

Cite this article: Imane ACHOURI , Y. ABOUSSALEH, R. SBAIBI, A. AHAMI, M. ELHIOUI. PREVALENCE OF IRON DEFICIENCY ANEMIA AND ASSOCIATED FACTORS AMONG URBAIN SCHOOL CHILDREN IN KENITRA, NORTH WEST OF MOROCCO. *The American Journal of Innovative Research and Applied Sciences*. 2015; 1(9): 232-238.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: <http://creativecommons.org/licenses/by-nc/4.0/>.